876 research outputs found

    Higher-order Boltzmann machines

    Get PDF

    Top-down inputs enhance orientation selectivity in neurons of the primary visual cortex during perceptual learning.

    Get PDF
    Perceptual learning has been used to probe the mechanisms of cortical plasticity in the adult brain. Feedback projections are ubiquitous in the cortex, but little is known about their role in cortical plasticity. Here we explore the hypothesis that learning visual orientation discrimination involves learning-dependent plasticity of top-down feedback inputs from higher cortical areas, serving a different function from plasticity due to changes in recurrent connections within a cortical area. In a Hodgkin-Huxley-based spiking neural network model of visual cortex, we show that modulation of feedback inputs to V1 from higher cortical areas results in shunting inhibition in V1 neurons, which changes the response properties of V1 neurons. The orientation selectivity of V1 neurons is enhanced without changing orientation preference, preserving the topographic organizations in V1. These results provide new insights to the mechanisms of plasticity in the adult brain, reconciling apparently inconsistent experiments and providing a new hypothesis for a functional role of the feedback connections

    Multi-modal Approach for Affective Computing

    Full text link
    Throughout the past decade, many studies have classified human emotions using only a single sensing modality such as face video, electroencephalogram (EEG), electrocardiogram (ECG), galvanic skin response (GSR), etc. The results of these studies are constrained by the limitations of these modalities such as the absence of physiological biomarkers in the face-video analysis, poor spatial resolution in EEG, poor temporal resolution of the GSR etc. Scant research has been conducted to compare the merits of these modalities and understand how to best use them individually and jointly. Using multi-modal AMIGOS dataset, this study compares the performance of human emotion classification using multiple computational approaches applied to face videos and various bio-sensing modalities. Using a novel method for compensating physiological baseline we show an increase in the classification accuracy of various approaches that we use. Finally, we present a multi-modal emotion-classification approach in the domain of affective computing research.Comment: Published in IEEE 40th International Engineering in Medicine and Biology Conference (EMBC) 201
    corecore